Surface glycoproteins of influenza A H3N2 virus modulate virus replication in the respiratory tract of ferrets.

نویسندگان

  • Xing Cheng
  • James R Zengel
  • Qi Xu
  • Hong Jin
چکیده

The hemagglutinin (HA) genes of the influenza A H3N2 subtype viruses isolated from 1968 to 2010 have evolved substantially but their neuraminidase (NA) genes have been relatively less divergent. The H3N2 viruses isolated since 1995 were found to replicate in the lower respiratory tract of ferrets less efficiently than the earlier isolates. To evaluate whether the HA or/and NA or the internal protein gene segments of the H3N2 virus affected viral replication in the respiratory tract of ferrets, recombinant A/California/07/2004 (CA04) (H3N2) virus and its reassortants that contained the same CA04 internal protein gene segments and the HA and/or NA of A/Udorn/309/1972 (UD72) or A/Wuhan/359/1995 (WH95) H3N2 viruses were generated and evaluated for their replication in the respiratory tract of ferrets. All the reassortant viruses replicated efficiently in the upper respiratory tract of ferrets, but their replication in the lower respiratory tract of ferrets varied. In contrast to the UD72-HA reassortant virus that replicated efficiently in the lungs of ferrets, the virus with the WH95-HA or the CA04-HA either replicated modestly or did not replicate in the lungs of ferrets. The reassortants with the WH95-HA and UD72-NA or CA04-NA had the tendency to lose a N-linked glycosylation site at residue 246 in the HA, resulting in viral lung titer of 100-fold higher than the virus with the HA and NA from WH95. The UD72-NA had the highest neuraminidase activity and increased viral replication by up to 100-fold in tissue culture cells during early infection. Thus, our data indicate that both the HA and NA glycoproteins play important roles in viral replication of the H3N2 influenza virus in ferrets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replication and Transmission of H9N2 Influenza Viruses in Ferrets: Evaluation of Pandemic Potential

H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. To evaluate the potential threat of H9N2 viruses to humans, we investigated the replication and transmission efficiency of H9N2 viruses in the ferret model. Five wild-type (WT) H9N2 viruses, isolated from different avian species from 1988 through 2003, w...

متن کامل

The Potential Effect of Glycyrrhiza Glabra on Early Step of Influenza Virus Replication

Background and Aims: The emergence of drug-resistant influenza viruses has become a serious threat for human and animal populations. Glycyrrhiza glabra (Gg) is a traditional medicine clinically used for the treatment of viral respiratory infection symptoms in most countries. We evaluated the effects of the herb on influenza virus replication in human lung cultured cells (A549) following the det...

متن کامل

Influenza H1N1pdm-specific maternal antibodies offer limited protection against wild-type virus replication and influence influenza vaccination in ferrets

OBJECTIVE The objective was to study passively acquired influenza H1N1 pandemic (H1N1pdm) maternal antibody kinetics and its impact on subsequent influenza infection and vaccination in ferrets during an outbreak of the H1N1pdm. DESIGN AND MAIN OUTCOME MEASURES Infectivity of the H1N1pdm in the respiratory tract of ferrets was compared with the previous seasonal A/South Dakota/6/2007 (SD07, H1...

متن کامل

Construction of Influenza A/H1N1 Virosomal Nanobioparticles

Background and Aims: Influenza is one of the main respiratory infections of humans, responsible for 300,000–500,000 annual deaths world-wide. Vaccination is one of the best ways to prevent infections including influenza. Influenza virosomes are virus-like particles, which retain the cell binding and membrane fusion properties of the native virus, but lack the ribonucleoprotein (RNP). A vi...

متن کامل

Environmental Conditions Affect Exhalation of H3N2 Seasonal and Variant Influenza Viruses and Respiratory Droplet Transmission in Ferrets

The seasonality of influenza virus infections in temperate climates and the role of environmental conditions like temperature and humidity in the transmission of influenza virus through the air are not well understood. Using ferrets housed at four different environmental conditions, we evaluated the respiratory droplet transmission of two influenza viruses (a seasonal H3N2 virus and an H3N2 var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Virology

دوره 432 1  شماره 

صفحات  -

تاریخ انتشار 2012